Unit 1 Algefrraic Foundations

Target 1.1: Using the order of operations to simplify numerical expressions
1.19 - Apply the order of operations [lby hand]
1.11- Apply the order of operations using the calculator

Target 1.2: Simplify radicals, including perfect suuare functions and rationalizing the denominator
1.2a - Simplifying radicals using the product properties of radicals
1.2b - Simplifying radicals using the quotient properties of radicals

Target 1.3: Apply the Properties of Exponents involving Products and Quotients
1.3a - Multiplication properties of exponents
1.3h- Division properties of exponents
1.3c - Rewrite radicals in rational exponential form

Target 1.4: Translate verbal models to algebraic expressions and equations
1.4a - Write expressions
1.4n- Write equations and inequalities

Name: \qquad

Vocabulary:

Order of Operations: \qquad

Order of Operations G-E-M-D - A - S		
GROUPING SYMBOLS	evaluate expressions INSIDE \qquad	Example: $(9+33-6) \div 6-3^{2}$
EXPONENTS (POWERS)	EVALUATE	
MULTIPICATION D DIVISION	SIMPLIFY \qquad TO \qquad	
ADDITION S SUBTRACTION	SIMPLIFY \qquad TO \qquad	

* YOU TRY NOW!

Evaluate the expression

1) $10+3^{2}$
2) $2[(10-4) \div 3]$
3) $28 \div 2^{2}+1$
4) Evaluate $\frac{12 k}{3\left(k^{2}+4\right)}$ when $k=2$

Annotate Here

1.1h - Apply Order of Operations [using the TI-84]
 Target 1: Use order of operations to simplify numerical expressions

Example 1: Using grouping symbols

Simplify the expression

$$
\frac{[-7+2(3+9 \cdot(2 \div 4))-4)]}{-8-6}
$$

Examile 2: Entering fractions in the Tl-84

Simplify the expression

$$
-7+\left\{5-14 \cdot\left(\frac{11}{3} \div \frac{22}{9}\right)\right\} \div 17
$$

Example 3: Entering exponents in the TI-84

Simplify the expression. Round your answer to the nearest thounsandths.

$$
3-\left(-\frac{3}{4}+\frac{5}{9}\right)^{2}-\left(\frac{(-10) \cdot 3(-2)}{\frac{7}{11}}\right)+1
$$

1.2a - Simplifying Radicals Using the Product Property of Radicals Target 2: Simplify radicals, including perfect suware functions and rationalizing the uenominator

Vocaloulary:

"Simplest Form of a Radical Expression"

Examples of Perfect Suuares

Product Property of Radicals

The square root of a product equals the product of the
\qquad of the \qquad .

Example:

Example 1: Use the product property of radicals to simplify each expression
 a) $\sqrt{12}$
 b) $\sqrt{24 p^{2}}$

d) $\sqrt{32 m^{5}}$

ANNOTATE HERE

How do you know when a factor can go outside of the radical?

Do we leave any PERFECT SQUARES in a simplified radical expression?

What are some other perfect squares? Can they be variables as well? List some examples.

1.2b - Simplifying Radicals Using the Quotient Property of Radicals Target 2: Simplify radicals, including perfect suluare functions ann rationalizing the denominator

Example 1: Use the quotient property of radicals

a) $\sqrt{\frac{11}{29}}$
b) $\sqrt{\frac{t^{2}}{49}}$

Example 2: Rationalize the Ilenominator
a) $\frac{\sqrt{2}}{\sqrt{5}}$
b) $\frac{1}{\sqrt{7 r}}$

* YOU TRY NOWI Simplify the expression

1) $\sqrt{\frac{15}{25}}$
2) $\frac{2}{\sqrt{5 y}}$

ANNOTATE HERE

Define the phrase
"Rationalizing the Denominator"

When you rationalize the denominator, what are you REALLY multiplying the fraction by?

1.3a - Apply Exponent Properties Involving Products Target 3 - Apply the Properties of Exponents involving Products and Quotients

Product of Power Property

Algebra 1 Unit 1 Algebraic Foundations 2015-2016

* YOU TRY NOWI Simplify the expression

Product of Power Property: Simplify the expression.

a) $2^{2} \cdot 2^{3}$	b) $4^{4} \cdot 4$
c) $w^{9} \cdot w^{2}$	d) $(-6)(-6)^{6}$
Power of a) $\left(5^{2}\right)^{3}$	ession. b) $\left[(-3)^{5}\right]^{3}$
C) $\left(n^{7}\right)^{2}$	d) $\left[(z-4)^{2}\right]^{5}$

Power of a Product Property: Simplify the expression
a) $(4 \cdot 16)^{7}$
b) $(-3 r s)^{2}$

Youtrivnow Answers:
a) 5^{6}
b) $(-3)^{15}$
c) n^{14}
d) $(z-4)^{10}$

QUESTIONS HERE!

YOUTRYNOW Answers:
a) $4^{7} \cdot 16^{7}$
b) $(-3)^{2} r^{2} s^{2}$
c) $-3^{2} r^{2} s^{2}$

QUESTIONS HERE!

1.3n - Apply Exponent Properties Involving Quotients Target 3 - Apply the Properties of Exponents involving Products and Quotients

Quotient of Powers Property

Let a be a nonzero real number, and let m and n be positive integers such that $m>n$.

Whenever a power is moved from the numerator to the
denominator or vice versa, the \qquad of the changes.

ALGEBRA:

$$
\frac{a^{m}}{a^{n}}=
$$

Example 1: Simplify the expression

$$
\frac{4^{7}}{4^{2}}=
$$

Quotient of Powers Property: Simplify the expression

a) $\frac{6^{12}}{6^{5}}$	b) $\frac{(-2)^{4}}{(-2)^{7}}$
C) $\frac{4^{2} \cdot 4^{8}}{4^{4}}$	d) $\frac{1}{y^{9}} \cdot y^{12}$

a) $\left(\frac{r}{s}\right)^{5}$	b) $\left(-\frac{4}{w}\right)^{3}$
c) $\frac{3^{5} \cdot 3^{4}}{3^{3}}$	d) $\frac{(-8)^{8}}{(-8)^{5}}$

CHALLENGE PRACTICE! Simplify the expression
a) $\left(\frac{2 y^{7}}{y^{5}}\right)^{3}=$
b) $\left(\frac{4 a}{b^{2}}\right)\left(\frac{2 a^{2} b^{3}}{a}\right)^{4}=$
C) $\left(\frac{7 y^{3} z}{y}\right)^{2}$
d) $\left(\frac{6 m^{3} n^{2}}{3 m n}\right)^{3}$

YOUTRYMOW Answers:
a) $\frac{r^{5}}{s^{5}}$
b) $\frac{(-4)^{3}}{w^{3}}$
c) 3^{6}
d) $(-8)^{3}$

QUESTIONS HERE!

Annotate Here

 voutrivnow Answers:a) 6^{7}
b) $\frac{1}{(-2)^{3}}$
c) 4^{6}
d) $(-6)^{7}$

QUESTIONS HERE!

VOUTRYWOW Answers:
a) $2^{3} y^{6}$
b) $\frac{4 \cdot 2^{4} b^{10}}{a}$
c) $7^{2}{ }^{a} y^{4} z^{2}$
d) $6^{3} m^{6} n^{3}$

QUESTIONS HERE!

1.3c - Rewrite Radicals in Rational Exponential Form
 Target 3 - Apply the Properties of Exponents involving Products and Quotients

Vocalulary: LABEL

1.4a - Write Expressions
 Target 4: Translate verbal models to algebraic expressions and equations

Vocabulary:
Verbal Model: \qquad

Rate: \qquad
\qquad
Unit Rate: \qquad

Translating Verbal Phrases		
Operation	Verbal Phrase	Expression
Addition	- The \qquad of 3 and a number n - A number x \qquad 10	
Subtraction	- The \qquad of 7 and a number a - Twelve \qquad a number x.	
Multiplication	- Five \qquad a number y - The \qquad of 2 and a number n	
Division	- The \qquad of a number a and 6 . - Eight \qquad into a number y	

Example 1: Translate verbal phrases
Verbal Phrase
Expression
Annotate Here

What do you need to put in your expression when you see "quantity?"

When you see "LESS THAN" The order \qquad .
"3 less than x" means
\qquad
b] 2 times the sum of 5 and a numbera
c] The difference of 17 and the cube of a number n

You and three friends are collecting canned food for a food drive. You each collect the same number of cans. Write an expression for the total.

Example 3: Find a unit rate

Three gallons of milk cost \$9.15. Find the unit rate.

YOU TRY NOW!
 Translate the verbal phrase into an expression.

1) The product of 5 and the quantity 12 plus a number n
2) The quotient of 10 and the quantity a number x minus 3
3) You and three friends are collecting canned food for a food drive. You each collect the same number of cans. Then, the total numbers of cans collected were evenly distributed to 2 food banks. Write an expression that represents the number of cans each food bank receives.

Find the unit rate.					
4)	\$12		6)		
420 miles			20 cups		
3 hours	$\overline{3 f t^{2}}$				8 people
YOUTRYNOW Answers: $1 \mathbf{5}(12+n)$	$21 \frac{10}{x-3}$	3J $\frac{1 \times 4}{2}$	4140 ${ }^{140 \mathrm{miles}}$	5) $\frac{54}{14^{\text {2 }}}$	
$\boldsymbol{\sigma} \frac{2.5 \text { cups }}{1 \text { person }}$					

You always have to make sure that denominator is equal to \qquad when you find the unit rate.

1.4h - Write Equations and Inequalities

Target 4: Translate verbal models to algebraic expressions and equations
Vocahulary:
Open sentence: \qquad

Expressing Open Sentences		
Symbol	Meaning	Associated Words
$a=b$	$a l s \quad$ to b	a is the ___ as b
$a<b$	$a l s$	a is ___ than b
$a \leq b$	a ls \qquad or \qquad to b	- a is \qquad b - a is \qquad than b
$a>b$	$a l s$	a is___than b
$a \geq b$	a ls \qquad or \qquad to b	- a is \qquad b - a is \qquad than b

Example 1: Write equation and innequalities

Verbal Sentence

Equation or Inequality
a) The sum of three times a number
a and 4 is 25 .
b) The quotient of a number x and 4 is fewer than 10.
c) A number n is greater than 6 and less than 12.

Example 2: Gheck possible solution

Check whether " 2 " is a solution of the equation or inequality
a) $7 x-8=9$
b) $4+5 y<18$

Algebra 1 Unit 1 Algebraic Foundations 2015-2016

* YOU TRY NOW!

Translate the verbal phrase into an equation or ineunality

1) The sum of 6 times a number and 1 is 25 .
2) 5 less than the square of a number x is greater than 10 .
3) the product of 7 and a number a is at least to 21 .
