1.1 -Geometry Essentials [Vocabulary]

Target 1 -Demonstrate knowledge of core definitions include: point, line, segment, ray, plane, angle, etc.

Vocabulary

(space provided to draw and create the various geometric words)

Point: occupies no \qquad or \qquad .
It is represented by a \qquad and \qquad such as A,
B, C, D, or E.
Line: can be defined by \qquad it passes \qquad .

Line segment: \qquad of a \qquad It has two such as C and D and is written
\qquad -

Ray: a \qquad of a line that starts at a
\qquad and extends forever in a certain
direction.

Plane: a \qquad figure that
continues forever and can be defined by listing any \qquad points on it which are not on a \qquad -.

* YOU TRY NOW!

1. Draw and label 3 points that are collinear.
2. What is $\overleftrightarrow{A B}$? Draw it.
3. Draw and label an example of a point.

Draw and label 3 points that are collinear. Identify a point, a line and a segment. Use proper notation.

Annotate Here

 Other Vocab:Postulate:
Statement that is accepted to be true without proof.
volume, space, dot, capital letter
two points, through
part, line, endpoints, $\overline{C D}$
portion, point
two dimensional, three, line

Collinear:
Three or more points on a straight line.

Angle: formed by \qquad with the same endpoint called the \qquad .

Naming Angles

1) Call the angle by its vertex.
2) Use 3 points with the vertex in the middle

Types of Angles
$0^{\circ}<$ Angle measure $<90^{\circ}$

Angle Addition Postulate

If R lies within $\angle Q T V$, then $m \angle Q T R+m \angle R T V=m \angle Q T V$

Indicating Measurement of an angle

1.1-Geometry Essentials [Gonstructions]

Target 1 - Demonstrate hnowledge of core definitions including: point, line, segment, ray, plane, angle, etc.

Vocahulary

Congruent: \qquad or \qquad of
the same length

Contructing a copy of a single line segment

Contructing a a copy of an angle

Annotate Here

Name these tools

How do you show congruency between:
A) segments?
B) angles

1.2a - Lengths of Segments Using Coordinates and Segment Addition Target 2 - Determine the Iength, midpoint, and ratios of segments

Segment Addition Postulate

If W is between F and X on a line segment, then $F W+W X=F X$.

Draw the situation above here

Example 1: Use seyment addition
Find the length of $\overline{D C}$?

Example 2: Use segment addition

Points A, B, C, and D are collinear and positioned in that order. Find the length of $\overline{B D}$ if $\overline{A B}=x+11, \overline{C D}=10, \overline{B D}=x+24$, and $\overline{A C}=x+16$.

* YOU TRY NOW!

The end points of $\overline{A B}$ are at $(8,3)$ and $(8,10)$. One of the endpoints of $\overline{C D}$ is at $(2,4) . \overline{A B} \cong \overline{C D} . \overline{C D}$ is in the first and second quadrant and parallel to the x-axis. What is the other end point of $\overline{C D}$?

Annotate Here

What is the ratio of $\overline{E D}$ to $\overline{\mathrm{DC}}$?

Label the following:
y-axis
x-axis
Quadrants I-IV origin

1.2h - Midpoint and Distance Formula
 Target 2 - Determine the length, midpoint, and ratios of segments

Example 1: Lengths of segments when graphen diagonally

Find the length of segment $\overline{R T}$ where $R(-1,0)$ and $T(4,2)$.

What's a synonym of "distance?"

Example 2: Applying the distance formula

Find the distance between $(2,-1)$ and $(5,3)$. Draw a diagram to confirm.

Annotate Here

\square
Example 3: Find the midpoint of the given segment.

- YOU TRY NOW!

1. Find the length of the segment shown to the right.

2. What is the midpoint of the segment shown in number 1?

What is the purpose of the subscript?
1.2c - Ratios of Segments

Taryet 2 - Determine the length, midpoint, and ratios of segments

Example 1: Model the situation and use ratios and proportions to find a partition

* YOU TRY NOW!

1. R is on $\overline{S T}$, and $\overline{S T}$ has a length of 63. If $\frac{S R}{R T}=\frac{2}{5}$, how far is R from T ?
2. Using the same directed line, if $S T=90$, and $\frac{S R}{R T}=\frac{9}{1}$, how far is R from T ?
