Unit 2 Transformations

Target 2.1 - Identify and determine congruent parts given a rigid motion

Target 2.2 - Perform and identify rigid transformations of points, segments, and figures
2.2a - Perform and identify reflections of points, segments, and figures
2.2b - Perform and identifiy rotations of points, segments, and figures
$2.2 c$ - Perform and identify reflections of points, seyments, and figures
Target 2.3-Perform multiple transformations to determine coordinates and location of the image

2.1- Transformations and Congruent Figures
 Target 1-Identify and determine congruent parts given a rigid motion

Vocabulary
Transformation: change of \qquad or \qquad of a figure.

Example 1: Using rigid motions

Identify the type of transformation shown.

Example 2: Gongruent Figures

The figures below are congruent. Identify the following: All pairs of congruent angles, congruent pairs of sides, and the congruent statement.

Annotate Here
(location, size)

What's a "rigid motion?"

What symbol is used to mean "congruence?"
A) $\triangle A B C \cong \triangle X Z Y$
B) $\angle B A C \cong \angle Y Z X$
C) $\overline{A B} \cong \overline{X Y}$

D) $\triangle B C A \cong \triangle X Y Z$

E) I don't know. Write down your question below.
2. What type of rigid motion relates the two shoes?

3. Is this an example of a rigid motion? Explain below.

Explanation:

VOCAB from the FUTURE
Dilation - a
transformation that stretches or shrinks an image.

Vocaloulary

Image - the \qquad of a figure after a transformation.

Pre image - the position of $a(n)$ \qquad prior to a transformation.
|sometry - a \qquad in which the pre image and its image are \qquad .

Example 1: Translate a figure in the coordinate plane

Graph and label the quadrilateral $A B C D$ with vertices $A(-2,6), B(2,4), C(2,1)$, and $D(-2,3)$. Find the image of each vertex after the translation:
$(x, y) \rightarrow(x+3, y-3)$. Then graph the image using prime notation.

Write a rule for the translation of $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then verify that the transformation is an isometry.

* YOU TRY NOW!

Graph and label image of the figure using the translation given
a) 1 unit right \& 2 units down.
b) 4 units left \& 3 units up

Annotate Here

Inew position, original figure, transformation, congruentJ

Student Resources
Game:
http://www.mathwarehouse.com/transform ations/translations-interactive-activity.php

YOU TRY NOW!

Graph and label image of the figure using the given translation rule
C) $(x, y) \rightarrow(x-2, y+3)$

d) $(x, y) \rightarrow(x+4, y-4)$

* YOU TRY NOW!

Write the rule in proper notation to describe each translation
Proper notation: $(x, y) \rightarrow(x \pm \ldots, y \pm \ldots)$
e) pre-image on the right

2.2h-Rotations

Target 2 - Perform and identify rigid motions of points, segments, and figures

Vocabulary

Rotation: a transformation that moves a figure along a \qquad path about a \qquad called the

Angle of rotation: can be both \qquad and
\qquad . Angle of rotation is defined by two rays where one goes from the \qquad to a starting point on the figure and the other goes from the center of rotation to the corresponding final point on the figure.

Example 1: Rotate the pre image 90 degrees about the origin
Write the coordinates of the pre-image and the image below.
 Clockwise (CW)

Pre-Image
Image
$\begin{array}{cccc}1(&) & 1^{\prime}(&) \\ 2(&) & 2^{\prime}(&) \\ 3(&) & 3^{\prime}(&) \\ 4(&) & 4^{\prime}(&) \\ 5(&) & 5^{\prime}(&)\end{array}$

REFLECTION/ANALYSIS

What do you notice about the corresponding coordinates of the preimage and the image? Write your predictions below

Example 2: Rotate the pre image

Annotate Here

(circular, fixed point, center of rotation)
(clockwise, counterclockwise, center of rotation)

SCAN FOR EXTRA SUPPORT
(Part two of the video)
https://www.youtube.com/watc $h ? \mathrm{P}=7 v K x h f P M y A 0$

Having difficulty? Write a question below to ask the next day. REMEMBER to ask!

Write the coordinates of the pre-image and the image below.
(CW)/(CCW)

Pre-Image

$1($	$)$	$1^{\prime}($
$2($	$)$	$2^{\prime}($
$3($	$)$	$3^{\prime}($
$4($	$)$	$4^{\prime}($
$5($	$)$	$5^{\prime}($

REFLECTION/ANALYSIS

What do you notice about the corresponding coordinates of the pre-image and the image? Write your thoughts below.

Example 3: Rotate the pre image 270 degrees about the origin
Write the coordinates of the pre-image and the image below.
(CCW)

Coordinates

Pre-Image	Image	
$1($	l'	$)$
$2($	$)$	$2^{\prime}($
$3($	$)$	$3^{\prime}($
$4($	$)$	$4^{\prime}($
$5($	$)$	$5^{\prime}($

REFLECTION/ANALYSIS

What do you notice about the corresponding coordinates of the pre-image and the image? Write your thoughts below.

Annotate Here

Having difficulty? Write a question below to ask the next day. REMEMBER to ask!

2.2c - Reflections

Target 2 - Perform and identify rigid motions of points, segments, and figures

Vocabulary

Line of Reflection: also called the \qquad ,
the axis that a figure is reflected about forming a congruent image that is symmetricical to the its original

Example 1: Reflect each image over the given line of reflection to find coordinates of the imaye.

Write the coordinates of the pre-image and the image below.
(Over the x-axis)

(Over the y-axis)

Goordinates

Pre-Image	Image	
11)	1'1)
21)	2'1)
$31)$	31)
41	$4^{\prime} 1$)
51)	5'1)

REFLECTION/ANALYSIS

What is the line called that helps you visually see how a figure is being reflected?

Annotate Here

(axis of symmetry)

Unit 2 Transformations 2015-2016
Example 2: Reflect each image over the given line of reflection to find coordinates of the imaye.
Write the coordinates of the pre-image and the image below

Coordinates

Pre-Image	Image	
1 ()	1'1)
21)	2' 1)
31)	31)
$4(1)$	$4^{\prime} 1$)
51)	5'1)

REFLECTION/ANALYSIS

What direction do " $x=$ any number" equations go?

What direction do " $\mathrm{y}=$ any number" equations go?

What do you notice about the corresponding coordinates of the preimage and the image? Write your thoughts below.

2.3-Compositions

Target 3-Perform multiple transformations to determine coordinates and Iocation of the imaye

Vocalbulary

Glide Reflection: a transformation in the plane that is a combination of a that line of reflection and a \qquad through a line parallel to

Composition of transformations: When two ore more transformations are combined to form a new transformation.

Example 1: Find the image of a glide reflection

The vertices of $\triangle A B C$ are $\mathrm{A}(2,1), \mathrm{B}(5,3)$, and $\mathrm{C}(6,2)$. Find the coordinates image of $\triangle A B C$ AFTER the glide relfection.

FIRST: TRANSLATE: $(x, y) \rightarrow(x-8, y)$

THEN REFLECT the translated figure in the x-axis

Coordinates of the GLIDE REFLECTION:

Example 2: Describing the composition of transformations

In the diagram, the coordinates of triangle $A B C$ are given. Describe the composition of transformations from $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Write each rule for each transformation.

Rule for $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$

Rule for $A^{\prime} B^{\prime} C^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$

Annotate Here
(line reflection, translation))

* YOU TRY NOW!

The vertices of $\triangle A B C$ are $\mathrm{A}(-6,2), \mathrm{B}(4,-3)$, and $\mathrm{C}(4,2)$. Find the coordinates image of $\triangle A B C$ AFTER the glide relfection.

Transformation 1: Reflect in the y axis
Transformation 2: the translated figure in the x-axis

