Unit 8 Similarity Figures and Dilations

Geometry

Target 1 – Use proportions to identify lengths of corresponding parts in similar figures

Target 2 – Perform and identify dilations

 Target 3 – Use ratios of lengths, perimeter, & area to determine unknown corresponding parts

 3.3a –Use Scale Factor & Similarity to Determine Unknown Lengths in Polygons & Circles

 3.3b –Use Scale Factor & Similarity to Determine Unknown Corresponding Parts

Target 4 – Perform compositions of figures to determine the coordinates and location of the image

Name:

3.1 – Similar Figures

Target 1 – Use proportions to identify lengths of corresponding parts in similar figures

Unit 3 Similar Figures and Dilations 2015-2016

3.2 –Dilations Target 2 – Perform and identify dilations

<u>Vocabulary</u>

Dilation: a transformation	where the	or			
	_ of a figure occurs, v	where the sides are			
or	proportionall	y about a center. Dilations			
do not change the	of t	he			

Example 1: Identify dilations

Determine whether the dilation is a reduction (shrink) or an enlargement (expand). Find the scale factor of the dilation.

Example 2: Perform a dilation

Dilate \overline{AB} by a scale factor of $\frac{2}{3}$.

Example 3: Use scalar multiplication in a dilation

The vertices of triangle ABC are A (-3, 0), B (0, 6), C (3, 6). Use scalar multiplication to find A'B'C' after a dilation with is center at the origin and a scale factor of $\frac{1}{3}$. Graph ABC and its image.

a) Calculate the scale factor for the dilation shown.

b) $\triangle ABC$ is dilated to form triangle $\triangle A'B'C'$. If $\frac{AB}{A'B'} = 7$, what is $\frac{B'C'}{BC}$?

c) The vertices of \triangle ABC is A (-7, 8), B (7, -5), C (8, 10). Find the vertices of the dilated image with scale factor of $\frac{1}{2}$. The center of the dilation is the origin.

QUESTIONS OR REFLECTION

What concepts were important to take away from this target? Questions?

Summary

Questions	
1)	a)
2)	b)
3)	C)
4)	d)

Annotate Here

3.3a –Use Scale Factor & Similarity to Determine Unknown Lengths in Polygons & Circles Target 3 – Use ratios of lengths, perimeter, & area to determine unk<u>nown corresponding parts</u>

Example 1: Use similar polygons to find lengths of unkown corresponding parts

The two rectangular swimming pools are similar. How far is it diagonall across each pool?

Example 2: Use similar polygons to find lengths of unkown corresponding *parts*

A high school wants to build a basketball court that is similar to an NBA basketball court, which is 94 feet long and 50 feet wide. Unforunately, the high school has room for a court that is 42 feet wide. How long should the court be, to the nearest foot?

QUESTIONS OR REFLECTION

Write down at least 2 questions from this page to ask the next day.

1)

Geometry 3.3b –Use Scale Factor & Similarity to Determine Unknown Corresponding Parts Target 3 – Use ratios of lengths, perimeter, & area to determine unknown corresponding parts

Geometry

3.4 – Similarity and Transformations Target 4 – Perform compositions of figures to determine the coordinates and location of the image

Example 1: Perform the composition

The vertices of a triangle ABC is shown below. The triangle is translated 5 units to the right creating image A'B'C'. Then, the image is reflected across the x-axis. Finally, the triangle is dilated by a factor of 1.5. What are the final coordinates of triangle A'''B'''C'''?

Coordinates after each transformation											
$\triangle ABC$		$\Delta A'B'C'$		$\Delta A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$		$\Delta A^{\prime\prime\prime}B^{\prime\prime\prime}C^{\prime\prime\prime}$					
Α(,)	Α'(,)	A''(,)	A'''(,)	
	,)	В'(,)	В''(,)	B'''(,)	
C(,)	C'(,)	C"(,)	C'''(,		

SUMMARY

In your own words, describe what a composition is.